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Abstract

An excited random walk is a non-Markovian extension of the simple
random walk, in which the walk’s behavior at time n is impacted by the
path it has taken up to time n. The properties of an excited random
walk are more difficult to investigate than those of a simple random
walk. For example, the limiting speed of an excited random walk is
either zero or unknown depending on its initial conditions. While its
limiting speed is unknown in most cases, the qualitative behavior of
an excited random walk is largely determined by a parameter § which
can be computed explicitly. Despite this, it is known that the limiting
speed cannot be written as a function of §. We offer a new proof
of this fact, and use techniques from this proof to further investigate
the relationship between § and limiting speed. We also generalize the
standard excited random walk by introducing a “bias” to the right, and
call this generalization an excited asymmetric random walk. Under
certain initial conditions we are able to compute an explicit formula
for the limiting speed of an excited asymmetric random walk.

1 Introduction

A simple random walk is a discrete Markovian model of random motion
whose properties are well understood. More specifically, a simple random
walk (Wy,)n>0 is a Markov chain with transition probabilities

P k=j+1
P, k) =P Wy =k | Wy1=j)=q1-p k=j—-1
0 otherwise.

We can give the following informal interpretation of a simple random walk:
a random walker starts at 0 and takes an infinite sequence of independent



steps. Each step is to the right with probability p € (0,1) and to the left
with probability 1 — p. Alternatively, a simple random walk (W,,),>0 can
be defined as W,, = Z?:l w; where the w; are i.i.d. random variables with

Because simple random walks can be represented both as Markov chains
and as sums of i.i.d. random variables, their properties are well understood.
For example, one-dimensional simple random walks are recurrent, i.e. they
return to 0 infinitely many times with probability 1, if and only if p = %
Recall that if a Markov chain is not recurrent, it is transient, i.e. returns to
0 only a finite number of times. We define the limiting speed of any random
walk (Rjy,)n>0 to be

lim —2, (1.1)

and note that this definition of limiting speed applies also to the more com-
plex random walk variations described below. For simple random walks, the
following proposition is known:

Proposition 1.2. The limiting speed of a simple random walk (Wy)n>0 with
probability p of stepping to the right is 2p — 1.

Proof. We have from above that

. Wn . 7‘1— Wi
lim — = lim 2:‘;1
n—,oo n n—oo n

Applying the Strong Law of Large Numbers, we obtain

n .
lim 221 Rl = 2p— 1.

n—o0 n

O]

Simple random walks have diverse applications to real world problems,
but some applications are better modeled by processes which are non-Markovian.
To that effect, mathematicians have introduced a number of self-interacting
random walks. Omne variation is the excited random walk, first introduced
by Benjamini and Wilson [2] in 2003 and later generalized by Zerner [8] and
Kosygina and Zerner [6].



An excited random walk is a non-Markovian extension of a simple ran-
dom walk which can be described informally as follows: at each site on
the number line, we place M cookies, each of which has a “strength.” The
random walker starts at the origin and takes an infinite sequence of steps.
The probability distribution of each step depends on the number of cookies
left at the walker’s current location, and when the walker leaves a site with
cookies remaining, he eats a cookie (See Figure [1)).

Figure 1: Excited Random Walk with 3 Cookies

Mathematically, we specify the number of cookies M and a vector of
cookie strengths p € RM with p; € (0,1), i € {1,2,..., M}. We let (Yy,)n>0
be an excited random walk and define the probabilities of stepping right or
left given the first n steps of the walk to be

pi E#{j;Yj =Y} =i<M
1/2 otherwise,
P (Y1 — Yy =—1]Y,Vi,....Y,) =1 P Vst —Vo=1|Yy,...,Yp).

P(Yn-l-l_Yn:l ’ Yb7Y17"'7Yn):

That is, the walker’s probability of stepping right on his i visit to a site
is given by the strength of the i*" cookie if i < M, and is % if i > M.
In this model, the probability of stepping left or right at time n depends
on the path the walker took up to the current time, and hence (Y,)n>0 is
neither a Markov chain nor a sum of i.i.d. random variables. This makes
analyzing its asymptotic behavior, such as its recurrence or limiting speed,



difficult. Nevertheless, the following theorem has been proven, which shows
how the qualitative behavior of an excited random walk is determined by
the parameter (M, p), defined as

M

5(M,p) = (2pi —1). (1.3)

i=1

Theorem 1.4 (Zerner [§], Basdevant and Singh [1], Kosygina and Zerner
6])). A standard excited random walk with M cookies and cookie strength
vector p is transient to the right if and only if 6(M,p) > 1. It has positive
speed if and only if 6(M,p) > 2. For —2 < 6(M,p) < 2, the walk has zero
speed.

While this theorem suggests d(M, p) might determine the speed of an ex-
cited random walk, it is known that the speed of an excited random walk
cannot be written as a function of §(M, p) [4]. In Section 4 we present a new
proof of this fact. We use the techniques in our proof to give several con-
crete examples of known monotonicity properties, and we further show that
d(M,p) and v(M, p) are unrelated when § > 2, in the sense that there exists
an excited random walk with arbitrarily large § parameter and arbitrarily
small speed.

1.1 What is an Excited Asymmetric Random Walk?

We now introduce the primary object of analysis in this paper: the excited
asymmetric random walk. An excited asymmetric random walk is a gener-
alization of the excited random walk, in which the probabilities of stepping
left or right from a site with no cookies need not be % (see Figure . More
formally, if (X,,)n>0 is an excited asymmetric random walk, we specify a
number of cookies M, a vector of cookie strengths p € RM and a bias pa-
rameter pg. Then the probability of stepping right or left given the first n
steps of the walk is

pi E#{j;X;j=Xn}=i<M

P(Xn+1—Xn:1|X0,X1,...,Xn):{ ]
po otherwise,

P(Xpi1—Xpn=-1]X0,X1,...,Xp)=1-P(Xpp1 - Xn=1]|Xo,...,Xn).

We will assume throughout this paper that py > %; a symmetry argument
extends our analysis to the other case.

Our motivation for studying this type of random walk is as follows: in
a standard excited random walk, the speed function is known to be zero



Figure 2: Excited Asymmetric Random Walk with 3 Cookies

when the number of cookies M is less than 3, since § < 2 if M < 3 by ,
and has so far been too difficult to compute exactly when M > 3 unless the
speed is zero. Adding a drift to the excited random walk makes the speed
function nontrivial, even when M is small (See Lemma below). In the
case of M = 1, we can compute the speed explicitly.

Theorem 1.5. The limiting speed of an excited asymmetric random walk
with one p1 cookie and bias parameter py, with p1 € (0,1),pp € (1/2,1) is
given by

2p0—1
2p0 —14+2(1 —p1)’

v* (po, p1) = (1.6)

As an illustration of this speed, we have Figure [3| which shows the speed
as a function of pg € (.5,1) for p; = 0.8, 0.9, 0.99.

Before giving the proof of our main results, first we will review some re-
sults about standard excited random walks that are needed for our analysis.

1.2 An Associated Markov Chain

While Theorem gives important information about the qualitative be-
havior of excited random walks, quantitative analysis will require a more
precise probabilistic statement of the speed. To this end, we introduce what
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Figure 3: v* (po,p1) for three values of p;

is known in the literature as the backwards branching-like process associated
to a random walk (X,,)n>0. The backwards branching-like process (Z,)n>0
is Markovian and can be associated to both standard excited random walks
and excited asymmetric random walks, so in the remainder of this section
we will use the term excited random walk to refer to both variations. We
begin by defining the random variables

T, = %gg{t : Xt =n}, (1.7)
U;L = #{t <T,:X;= .’If,Xt+1 =T — 1} (18)

T, is interpreted as the hitting time of site n, while U}’ is the number of left
steps from site x by time 7,, (See Figure [4)). Under this definition, it is clear
that U]} = 0 and that U]’ are random variables which are non-decreasing in
n. We can think of U]’ as the number of left steps from x before reaching
x + 1 for the first time plus the number of left steps from x between the
first left step from z + 1 and the first return to = + 1 before T;,, plus the
number of left steps from x between the second left step from =z 4+ 1 and
the second return to x + 1 before T},, and so on. Thus the distribution of
the random variable Uy is determined by the value of U, ;, and the process
o, upr_y,...,U) is a Markov chain. The transition probabilities are given
by

p(l,m) =P (U:? =m|Uzy, = l)
= P (m steps left from x by T), | | steps left from = + 1 by T},)
= P (m steps left from x before [ + 1 steps right from z). (1.9)

The last equality follows from the the fact that if the walk takes [ left steps
from x + 1, the walk must take [ steps right from z to return to x + 1 after



each left step, plus a step right from z to reach x + 1 for the first time.
Xi
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Figure 4: An example of U;.

The backwards branching-like process (Z,),,q, which will be constructed
more rigorously in the remainder of this section, is a Markov chain designed
such that the following theorem holds.

Theorem 1.10 (Basdevant and Singh Proposition 2.2 [1]). If an excited
random walk is recurrent or transient to the right, then for all n € N, if
Zy = 0, then the processes (Zo,Z1,...,Zn) and (Uﬁ, ,’LL_l,...,U(’f) have
the same distribution.

Remark 1.11. The backwards branching-like process (Zy),,~ is called branching-
like because the sequence (Uf[, [T .,Ug) is like a branching process
with migration, in which U}’ ; is the result of U}’ 4+ 1 individuals reproduc-
ing according to the probability distributions explained below. The pro-
cess (Zp)n>0 is called backwards because the index of the Markov chain

(U2, Up—1,...,U}) starts at n and decreases.

To construct (Zy),,~q, we first define independent sequences of random
variables (&, ;) >0 by the probability of jumping right on the j* visit to site
n in the corresponding random walk. For example, in a standard excited
random walk with M cookies and cookie vector p, we have

€ = Bernoulli(p;) : j < M
"7 Bernoulli(1/2) : j > M.

Then, we define the random variables A; ;, to be the number of “failures” in
the sequence of (&; ;) before k “successes.” That is,

7=>0
n+k

Ajp=min{n>0: me =k ;. (1.12)
j=1



Then the backwards branching-like process (Z,,) n>0 18 defined to be a Markov
chain with transition probabilities

p(l,m) =P (Zyy1=m|Z, =1) =P (Apt1141 =m).

We omit a proof of Theorem but the connection between the pro-
cesses (Zo, Z1,...,Zy) and (UT’LL, AT Ug‘) can be seen by considering

definitions ([1.9) and (1.12) and interpreting left steps as failures and right
steps as successes.

Example 1.13. For an excited asymmetric random walk with one p; cookie
and bias parameter pg, we have the following transition probabilities for the
associated backwards branching-like process:

p(0,0) =p1

p(0,k) = (1 —p1)(1 = po)* 'po for k>0

p(1,0) = pipo

p(L k) = p1(1 —po)po + k(1 — p1)(1 — po)*'pg  for k>0
p(i k) = (TP =po)*pg + (P71 (1= p1) (1 = po) oy

for j > 2,k >0.

Since the transition probabilities are all non-zero, the backwards branching-
like process (Zp),,~ is an irreducible Markov chain. If its unique stationary
distribution exists, we will denote it as 7= and we will use P, and E, to
denote probabilities and expectations conditional on Zy ~ 7.

The following lemma gives a useful decomposition of the random vari-
ables A; 1, which we will use in our proof of Theorem

Lemma 1.14 (Basdevant and Singh 2008 |1]). For all j > M, we have

dist
Ak B A +m+ o+ eem
where (v;)i>0 are i.i.d. geometric random variables independent of A; pr—1
with parameter pg, i.e. P(y1 = 7) = (1 — po)?po, where po is the probability
of stepping right on the (M +1)%t visit to a site in the corresponding random
walk.

The proof of Lemma [1.14] is identical to that of Basdevant and Singh’s
Lemma 2.1 [1] for the standard excited random walk, and is thus omitted.
Now, having developed the backwards branching-like process, we have
the machinery necessary to state the following theorem, which gives the
probabilistic formulation of the speed which we use to prove Theorem



Theorem 1.15 (Basdevant and Singh 2008 [1]). For a standard excited
random walk with M cookies and cookie strength vector p, the stationary
distribution m of the associated backwards branching-like process (Zy), >
exists if and only if 6(M,p) > 1.

Further, if 6(M,p) > 1, then the speed of the walk is given by

1

~ (1.16)

v(M, p)

. . 1
with the convection that T = 0.

Remark 1.17. Using Lemma and Theorem [I.10] it is possible to derive
. While we omit the proof, the argument is guided by the intuition that
the speed of the walk at time 7T, can be related to the number of left steps it
has taken by that time, which can be investigated through the asymptotic
behavior of (Z,,)n>0. The representation of the speed as given by can
be used to show that the speed is nonzero if and only if §(M, p) > 2. This
is done by showing that an excited random walk with parameters M, p has
E, [Zo] < oo (and thus positive speed) if and only if 6(M,p) > 2 [1].

Importantly, the proof of Theorem [1.15] requires only that the walk is
transient to the right, not that there are finitely many cookies. Since an
excited asymmetric random walk can be interpreted as an excited random
walk with infinitely many cookies at each location, is valid for the
excited asymmetric random walk model when it is transient to the right.

2 Calculating the Speed

In this section we prove Theorem We will need the following lemma,
which we will prove in the next section.

Lemma 2.1. The backwards branching-like process (Zy)n>0 associated to an
excited asymmetric random walk with parameters M > 1,p € (0, l)M and
bias parameter po € (1/2,1) has a stationary distribution 7, and E; [Zo] <
00.

Let (Z,)n>0 be the backwards branching-like process associated to an
excited asymmetric random walk with one p; cookie and bias parameter
po > %, and let m be its stationary distribution. From , we know
that if we can calculate E;[Zp], then we can calculate the speed of the walk.
Since calculating explicit values of 7 seems to be a very difficult problem (See
Appendix A), we instead follow the approach of Basdevant and Singh [1] and



attempt to calculate E.[Zy] by studying the probability generating function
of m. Let

o0
G(s) = Eq[s7] =) m(k)s" (2.2)
k=0
be the probability generating function of 7. We study the p.g.f. of m because
of the well-known property that G'(1) = E;[Zy], where G'(1) is the left
derivative at 1. This enables us to calculate E,[Zy] without calculating 7
explicitly.

2.1 Deriving a Recursive Formula for the P.G.F

Since explicitly calculating 7, and hence G(s), is a difficult problem, we
instead find a recursive formula for G(s).

Proposition 2.3. The probability generating function of m satisfies the re-
cursive formula

oo = () e () e

Proof. Since T is a stationary distribution, we know that E,[s%0] = E,[s%1],
and thus we can also write G(s) as

o0
G(s) =Y w(k)E[s”|Zy = k]. (2.5)
k=0
From Lemma [1.14] we have
E[s%| 2y = k] = E[sA 440 — E[sAuJE[sF,
where E[s411] = E[s?1|Zy = 0] from our definitions. Using the transition
probabilities given in Example we can calculate E[s71|Zy = 0] as
- p1+ s(po — p1)
E[s?1|Zy = 0] = skp(),k‘:#.

Using the p.g.f. of a geometric random variable and substituting into ({2.5)),
we have

o0 Iy k
G(s) =E[s|Zy = 0] Y_ n(k) (°)>

P 1—s(1—po
- () o (=tem)

10



2.2 Finding E, [Z)]
Using Lemma and Proposition we now prove Theorem

Proof. Recall that all probability generating functions are differentiable on
[0,1], so G'(1) = E; [Zy], where G'(1) is the left-hand derivative of G(s) at
1. Applying the product and chain rules to (2.4]) yields

0= () ¢ (stmm) ()
+ 6 (Tstimm) (502

Evaluating at s = 1 yields

cw=cw(52)+(5r)

and solving for G’(1), which is possible since G'(1) = E[Zy] < co by Lemma
2.1] we obtain

1—m

G'(1) =E, [Zo] = T

Substituting into ((1.16), we obtain the formula for the speed given in The-
orem [1.9 ]

3 Proof of Lemma 2.1]

Lemma [2.1| follows from Theorem 1.6 in [5], but we offer the following direct
proof, both in the interest of self-containment and because the techniques
used in the proof will be referenced later.

For p = (p1,p2,.--,pm), let PI/ = (p1,P2:-- - PM, DO, PO, - P0) € RY,
and choose N > M such that §(/V,p ) > 2. We now construct the backwards
branching-like processes associated to two excited random walks, the first an
excited asymmetric random walk (Xooy)n>0 with parameters M, p,po for
po > 1/2, and the second walk (X ,)n>0 a standard excited random walk
with NV cookies and cookie vector p € RY. We will use a coupling argument
with the backwards branching-like processes associated to (Xoon)n>0 and

11



(XN,n)n>0 to prove the lemma. To construct these backwards branching-like
processes, we first let (fi,j)j>1 be given by

Bernoulli(p;): 1 <j< M
s = { i (3.)

Bernoulli(pg) : j > M,

and let (¢, j)j>1 be similarly defined sequences of random variables such that

Bernoulli(p;) : 1 <j <M
Gi,j = 4 Bernoulli(pg) : M < j < N (3.2)
Bernoulli(3) : j > N.

We define the random variables A; j, and B; ;. to be the number of failures
before k successes in the sequences of Bernoulli random variables (fi,j)j>1
and (Ci’j)j>l7 respectively. Then we let (Zoo n)n>0 and (Zn n)n>0 be Markov
chains with transition probabilities given by:

Zopo=2)=1,

Zoomt+1 = k| Zoon = j) = P (Any1,j+1 = k),
Zno=2%)=1, and

ZNpt1 =k|ZNyp = j) = P (Bnt1j41 = k).

Poo,z (
Poo,z (
Pn.(
Pn.(

Then (Zoon)n>0 and (Znn)n>0 are the backwards branching-like processes
associated to (Xoon)n>0 and (Xnn)n>0, respectively. Since pg > 1/2, we
can couple (&;5);5; and (Gij);5; such that:

e For all 4, j, & ; are independent Bernoulli random variables as defined

in .

e For all 4, j, (; ; are independent Bernoulli random variables as defined

in (3.2).
e P(&; > ¢ j)=1foralli,j.

12



One such coupling would be

piif1<i<M
P;=1,G;=1)=Spoif M <i<N
1/2if i > N,
0iIf1<i<N
po—1/2ifi> N,
1—pifl<i<M
1—pyifi> M.

P(&;=1,G,;=0) —{

P(&,;=0,¢G,;=0)= {

Since P(&; > (;;) = 1, it is clear from the definitions of A4, and B;
that A; < B, for all ¢, k. Also, by definition B;j is nondecreasing in k.
Therefore if Z, < Zn j, then

Zsodr1 = Ak, Zoo jt1 < Bry1,20 441 < Brv1,2y 011 = ZNgr1- - (3.3)

Since Zy 0 = Zn,0 by construction, induction shows that Z, , < Zy,, for
all n.

We now use the coupling to show that the stationary distribution of
(Zoom)n>0 exists. Let Tng,o and T]J\;’O be the times at which Z ,, and Zy
first return to 0, respectively. That is,

Ty o=inf{n>0: Zyg, =0},

[e. 9]

Ty o=inf{n>0:Zy, = 0}.

Because Zs, < Zn,, under our coupling, we have that Zy, = 0 implies
Zsom = 0, so TO":OO < T(;,FNv and hence EO[TJOO] < EO[TJN]- Therefore
if (Znn)n>0 is positive recurrent, so is (Zoon)n>0. We chose N so that
(XN,n)n>0 would have positive speed (equivalently, d(XV, p’) > 2), and hence
be transient, so we know that (Zy )n>0 has a stationary distribution my
(which is equivalent to being positive recurrent). Therefore (Zs )n>0 has
a stationary distribution, which we will denote .
A similar application of the coupling can be used to show

Eﬂ'oo [Zoo,(]] S Eﬂ'N [ZN,O] < 00,

where the last inequality holds because N was chosen such that §(N, p/) > 2,
and hence v(N,p’) > 0.

13



4 Monotonicity Properties of Excited Random Walks

It is known that a standard excited random walk with parameters M > 1
and p € RM is transient if and only if & (M,p) > 1, and has positive speed
if and only if 6(M,p) > 2. But while §(M, p) completely determines these
qualitative properties, it is known that the speed of a standard excited
random walk is not a function of §(M,p) [4]. In Section 4.2 we give a
new proof of this fact. Further, our argument can be used to show that
0(M,p) and v(M,p) are unrelated when 6(M,p) > 2, in the sense that
there exist excited random walks with arbitrarily large § parameters and
arbitrarily small speeds. Before proving this, we present some previous
results on monotonicity.

4.1 Previous Results on Monotonicity

When considering vectors of cookie strengths p = (p1,p2,ps,...,Pm), a
natural partial ordering between two cookie vectors p and q of length M
arises. If for all i = 1,..., M, p; < g;, we write p < q. Zerner [8] showed
that if p < q, then v(M,p) < v(M,q). Holmes and Salisbury [4] developed
a weaker partial ordering for cookie vectors, generalizing the results from
Zerner.

Definition 4.1. We write p < q if there exists a coupling of (Y,Z), Y =
(Y1,Ya, ..., YY), Z=(Z1,Zs,...,Z)) such that

e {Y1,Y5,...,Y)y} are independent Bernoulli random variables with Y; ~
Bernoulli (p;).
o {Z1,Z5,...,Zy} are independent Bernoulli random variables with

Z; ~ Bernoulli (¢;).
e PSS Y < 2 =1 forallm =12, M.
Moreover, we write p < q if p < q and p # q.

Under this partial ordering, if p < q, then v(M,p) < v(M,q) and
0(M,p) < 6(M,q). If p < q, then either v(M,p) = v(M,q) = 0 or
v(M,p) < v(M,q), but importantly this strict partial ordering does not
imply a strict inequality between 6(M, p) and 6(M,q) [4,[7].

We take a moment now to discuss what these partial ordering tech-
niques can and cannot show regarding the relationship between §(M, p)
and v(M, p), and to describe the new monotonicity results given in Section

14



4.2. First, the strict partial ordering can be used to find M, p,q such that
d(M,p) = §(M,q), but v(M,p) < v(M,q), which shows that the speed is
not a function of § [4]. Additionally, a continuity argument together with
the above example gives §(M, p+e) > §(M,q), but v(M,p + €) < v(M, q)
for some € = (e, ¢, ...,¢) € RM [7]. However, this argument cannot be used to
produce a specific numerical example, since it is unknown how small € must
be. Furthermore, it is clear from the definition of the partial orderings that
p =X q implies p; < ¢;. Just as with the relationship between the speed and
d, the strict partial ordering together with a continuity argument can show
that there exist M, p,q with p; > ¢1 and v(M,q) > v(M,p) > 0 [7], but
again the proof is not constructive. Finally, the partial ordering techniques
in general give information about the speed of excited random walks only
in relation to each other and so cannot give any absolute information about
the speed.

4.2 Owur Results on Monotonicity

Throughout this section, we let v(M, p) be the speed of a standard excited
random walk with cookie vector p € RM | we let v*(pg,p1) be the speed
of an excited asymmetric random walk with one cookie of strength p; and
bias parameter py, and we let v5(p) = 2p — 1 be the speed of a simple
random walk with parameter p .We prove that v(M, p) cannot be written
as a function of §(M,p) if 6(M,p) > 2 by proving a slightly more general
theorem, which loosely speaking states that an excited random walk with a
few strong cookies tends to move faster than an excited random walk with
many weaker cookies.

Theorem 4.2. Choose M > 3 and p = (p,p,...,p) € RM such that
d(M,p)=M(2p—1)>2. Forie N we define

1 M(@2p—1)
() — =
p 5 T 2+ (4.3)
p; € RM¥ = (p) p@ . p®), (4.4)
so that (M +i,p;) = 0(M,p) for all i. Then

lim v(M +i,p;) = 0. (4.5)

1— 00

As i increases, the number of cookies at each site increases and the
strength of each cookie decreases in such a way that the “total drift” at each

15



site, as measured by the parameter J, is unchanged. That the speed should
decrease as ¢ increases is intuitive, since as ¢ — 0o, the excited random walk
acts more and more like a simple symmetric random walk, which has speed
0. The proof below is guided by this intuition.

Proof. A simple random walk with parameter p( is equivalent to an excited
asymmetric random walk with one cookie of strength p(®) and bias parameter
p(@. From the proof of Lemma it is clear that v(M;, p;) < v*(p@, p®).
Since v*(p¥,p@) = v*(p®) = 2p) — 1 where v*(p(") is the speed of a
simple random walk with parameter p(), we have v(M;, pi) < 2p() — 1. As
i — o0, pl) — %, and hence v,(p) — 0. Therefore v(M;, p;) is a sequence
of positive numbers bounded above by a sequence which tends to zero, and
hence itself tends to zero. O

It is clear from Theorem 4.2 that two excited random walks with the
same 0 value need not have the same speed, and hence that the speed of an
excited random walk cannot be expressed as a function of 4.

We have a corollary which shows that it is possible to construct an excited
random walk with parameters M > 3,p € RM with §(M, p) arbitrarily large
and v(M, p) arbitrarily small.

Corollary 4.6. Given any n,e > 0, there exist M > 3,p € RM such that
d(M,p) >n and v(M,p) < e.

Corollaryeasily follows from Theorem since §(M, p) can be made
arbitrarily large by increasing M and Theorem shows how v(M;, p;) can
be made arbitrarily small.

We now give a corollary and example showing how to construct specific
cookie vectors whose § parameters and speed are in opposite relations.

Corollary 4.7. There exist cookie vectors q € R3,p; € R3* such that
v(3,q) > v(3+1i,p;) and 6(3,q) < 6(3+ 14, p;)-

Proof. Let M = 3. Choose ¢, p such that % <g<p<1. Let p=(p,p,p),
q = (q,¢,q), and define p(), p; as in Theorem While v(3, q cannot be
calculated exactly for a cookie vector q = (g, ¢q,q), there is a lower bound
f(q) on the speed v(3,q) [3] given by:

(6 —5) (¢* —2¢ — 1)

(4.8)
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Choose N € N such that

6 (p (24¢* — 42¢° — 3¢* + 28¢ — 9) + 2 (—6¢* + 9¢° + 5¢* — 8g + 1))

V= (64— 5) (¢ 20 1)

Then for all i > N,

3(2p—1)

v =2 1= 25

< flg) < v(3,q),

It is clear from the proof of Theorem that v(3 + i, p;) < v°(p™), so we
v(3+1i,pi) < v(3,q), and simple algebra also shows §(3,q) = 3(2¢ — 1) <
3(2p — 1) = 8(3 +1,py). 0

Example 4.9. Let p = 0.99,¢ = 0.85, N = 7. Let p; and p(¥ be defined
as in Theorem Then p®) = % + % = %, and it is clear from
the proof of Corollary that v(11, pg) < v(3,q) while §(11, pg) = 2.94 >

2.1 =6(3,q).

Finally, we give a proposition and example that show how to construct
two excited random walks with positive speeds whose initial cookies and
speed are in opposite relations.

Proposition 4.10. There exist cookie vectors q € R3, p € RM such that
q1 < p1, but v(3,q) > v(M,p) > 0.

Proof. Let % <g<p<1landq=(q,¢q). Then 6(3,q) > 2. Choose ¢ > 0
such that

. (-nfl@ _ A-p)(6p—5) (¢ -2 1)
1—flq)  2(12¢* —24¢3 + 7> + 12¢ — 7)

where f(q) is as defined in (4.8). Then we have

. 2(1/24¢€) -1
1/2 =
vt = i n o ST a2 =)
€

e+ (1—p)

< f(9);

so v*(1/2 +€,p) < v(3,q). Choose N such that

N>iZ2

T 142
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Then for p = (p,1/2 +¢,1/2 +¢,...,1/2 +¢) € RM with M > N, we
have 6(M,p) > 2. It is clear from the proof of Lemma together with the
values of §(3,q) and §(M,p) that 0 < v(M,p) < v*(1/2 + ¢, p). Therefore,
v(M,p) <v*(1/2 +¢€,p) <v(3,q), whereas p; = p > ¢ by construction. [J

Example 4.11. Let p = 0.99, ¢ = 0.85. We choose ¢ = 0.0045 and N = 114.
It is clear from the proof of Proposition that if M > N, p = (p,0.5 +
6,05 +¢€...,05+¢) € RM q = (¢,q,q), we have 0 < v(M,p) < v(3,q)
and q1 < p1.

4.3 Open Question

Let p; be described as in Theorem [4.2 Theorem [4.2| shows that the terms
v(M + i,p;) become arbitrarily small as ¢ increases, but do they do so
monotonically? That is, does the inequality v(M+i + 1, pir1) < v(M+1, p;)
hold for all ¢7 It is in general not possible to use the partial ordering (<) to
answer this question, as is demonstrated by the following example.

Example 4.12. Let M = 3, p > 1/2, and p = (p,p,p). Then p(l) =
% and p? = 3pT+1 by (4.3). In order to compare cookie vectors of the
same length, we will consider

f)l == (p(l)up(1)7p(1)7p(l)7 1/2> and
p2 = (0@, p?,p@ pP® p2).

For the limit defined in Theoremto be monotone, we must have v(5, p2) <
v(4,p1), which we can try to prove by showing p2 =< pi1. But to have
p2 = P1, we must have that the probability of all p?) cookies being suc-
cesses is less than the probability of four p) and one 1 /2 cookie being

successes, i.e. (p?)° < @' On the contrary, we have
5 4
(P — M) _ (Bp+1)\° 1/ (6p+1)
2 5 2 8
_9(2p — 1)* (55296p° + 34956p* + 7572p + 563)
N 25600000

>0 forp>1/2.

) ~ .. .
Since (]7(2))5 > (M#, we have pg £ p1. Similarly, since p? < pM) we
have p2 % P1, so we cannot determine any relationship between v(5, p2)

and v(4, p1) by this partial ordering.
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Appendices

A  Computing 7(0) and 7(1)

We attempted to compute 7(0) and 7(1), where 7 is the stationary dis-
tribution of the backwards branching-like process associated to an excited
asymmetric random walk with one cookie of strength p; and bias parameter
po. For an excited asymmetric random walk (X,,)n>0 which is transient to
the right, we have 7(0) = P(U§® = 0) and n(1) = P(U§® = 1), where U§® is
the total number of steps from 0 to —1 during the walk. This fact follows
from the equality in distribution of the processes (U})o<z<n and (Zp)n>o0,
and the fact that the limiting distribution of a Markov Chain is equal to its
stationary distribution.

Throughout this analysis, it will be helpful to know the probability
P.(T, < Ty) in a simple random walk with parameter p, where T} is as
defined in . The solution to this problem, often called the Gambler’s
Ruin problem, is known to be given by the function

e B
hp, @, y,2) = i:;%p)’”’y’ i
=, p=

= N

We will use our interpretation of the stationary distribution in terms of the
random variable Ug® together with the function h to investigate 7(0) and
m(1). We have

o0
7(0) = P(walker never steps from 0 to -1) = P inf X, >—-1].
(0) = P( p =117 (o, %> 1)

We will condition each probability in the infinite product above on X7, 1
using the following probabilities:

P(Xp 41 =k+1)=p1,
P(Xrp1=k—1)=1-p,

P inf X 11X =k+1|=1 d
(Tk<fllng+1 = | Tetd + ) > an

P( inf X, > _1|XTk+1 :]{3—1) :h(po,/{:—l—l,—l,k:—l).

Tp<n<Tki1

20



All of these equalities are clear except the last, which holds because after
the walker steps down from k at time T}, there are no cookies at any site
j € {0,1,...,k}. Now, conditioning P (inkaSnSTk+1 X, > —1) on X741
yields

I1° ( inf X, > —1) = [[{r + @ = pO)hlpo. b+ 1,1,k — 1)},
k=0 k=0

Tp<n<Tk41

(A1)

To compute (1), we use the interpretation w(1) = P(Ug° = 1) to determine

NE

7(1) = ) P(step left from 0 once between T}, and Tj41, nowhere else).

>
Il

0
(A.2)

We further note that the probability of stepping left nowhere except possibly
between T}, and Tjy1 is related to 7(0) by the equation

P(no left steps from except possibly between T, and T} 1)

- 11 P( inf Xn>—1>: m(0) . (A3)

50k \Isn<Tin p1+ (1 —p1)h(poss1,-1,6—1)

Now we observe that the probability of the walker stepping left from zero
once between Ty, and Tj1 and nowhere else is equal to the probability that
he does not step left from 0 at any time not between T}, and T}, 1 multiplied
by the probability that he steps left exactly once between T} and T} given
he has not stepped left from zero elsewhere. Further, the probability that
the walker steps left exactly once between 7} and Tj4; given he has not
stepped left from zero elsewhere is given by the probability that he reaches
—1 between T}, and Ty exactly once. Mathematically,

P(walker steps left from 0 exactly once between T} and T1)

=PH#{Tk <n <Tpp1: X = -1} =1), (A.4)
which we can compute exactly using gambler’s ruin probabilities:

P#{T, <n<Tpy: X, =-1}=1)

= (1 — P(no left steps from 0 between T} and Tyy1))h(po, &+ 1,—1,0)
(A.5)
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Now combining (A.2), (A.3), (A.4), and (A.5) yields the equation

N (1 —=p1 — (1 —p1)h(po, =1,k + 1,k —1))h(po, k +1,—1,0)
i _kZ:oW(O) p1+ (1 —p)h(po.k+1,—1,k—1)
(A.6)

Unfortunately, while (A.1) and (A.6) are explicit, they are too difficult to
simplify even with the help of software - a fact which highlights the complex-
ity of the backwards branching-like process and its stationary distribution.
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